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Abstract. One of the main goals of contemporary quantum field theory re-

search is to compute and understand the path integrals associated to conformal

field theories. In the 1980s, Witten and some others realized that these val-
ues could be interpreted as certain numerical invariants called elliptic genera,

cohomological objects which contain deep information about geometric struc-

tures on manifolds. In this talk, I will describe the theory of elliptic genera and
how the surprising relationships they encode can shed light on the underlying

phenomena of conformal field theory.
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Introduction

A properly developed theory of
elliptic cohomology is likely to shed
some light on what string theory
really means.

Ed Witten

The main sources for this talk are [9] and [14].
This story begins with the theory of genera, very classical topological invariants

of manifolds. These objects admit both analytic and cohomological descriptions,
and we will need both of them to understand the subclass of so-called elliptic genera.
Equipped with this Atiyah-Singer-type relationship and the associated correspon-
dence between elliptic objects and spin geometry, we’ll enter the slightly shaky (but
highly promising) grounds of conformal field theory, which will be described as a
kind of equivariant cohomology. Finally, I’ll explain how this correspondence can
be categorified, lending it a lot more structure and motivating the Stolz-Teichner
program.

Date: September 16–23, 2022.
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1. Elliptic Genera

I’ll start with a definition.

Definition 1.1. A genus is a ring homomorphism Φ : Ω → C, where Ω is the
oriented cobordism ring.

A priori, this might seem like a very complicated object. By taking our ho-
momorphism to be valued in a field, however, we have effectively rationalized the
problem, which greatly simplifies it. Because Ω ⊗ Q is a free polynomial algebra
on {CP2n | n ∈ Z+}, a genus is the same as a choice of complex number for each
positive even integer. This sequence can be expressed by its logarithmic generating
function logΦ(x) =

∑
n∈Z+

1
2n+1Φ(CP

2n)x2n+1, so genera correspond precisely to
formal power series over C whose even-degree terms are 0.

We will be interested in the genera whose logarithm is, roughly speaking, the
functional inverse of an elliptic function. More precisely:

Definition 1.2. A genus Φ is called elliptic if its logarithm has the form logΦ(x) =∫ x

0
(1− 2δt2 + εt4)−1/2 dt.1

This is called an “elliptic integral of the first kind”, and it extends to a holomor-
phic function on an appropriate domain. If its discriminant ε2(δ2 − ε) is nonzero,
then it is (locally) invertible, with the inverse function being an odd elliptic func-
tion with a unique order-two zero ω. This is called an odd Jacobi elliptic function,
and it is uniquely characterized by ω together with its period lattice L. (In the
degenerate cases, the two periods fail to be linearly independent and thus give rise
to sin or tanh.)

It can be shown that elliptic genera admit a homogeneity property with respect
to the parameters: multiplying δ by λ2 and ε by λ4 sends L to λ−1L and Φ(M) to

λ
1
2 dimMΦ(M) (for any manifold M). This has two important implications. First,

it shows that certain elliptic genera are equivalent up to scaling, and so it is no
loss of generality to only consider genera up to normalization; and second, it shows
that Φ(M) is a modular form! Specifically, it is a level 2 modular form of weight
1
2 dimM , i.e. a modular form with respect to the subgroup Γ0(2) ⊂ SL2(Z). In
the language of algebraic geometry, this says that Φ(M) is a section of a certain
line bundle over the moduli stack (or modular curve) X0(2) of elliptic curves with

level 2 structure. The line bundle is ω⊗ 1
2 dimM , where ω is the sheaf of fiberwise

differential forms restricted to the zero section; from this perspective, Φ(M) is a
universal (0, 1

2 dimM)-tensor on elliptic curves with level 2 structure. Whichever
parameters we use, this shows that we have a universal elliptic genus which includes
all elliptic genera and is valued in the ring of level 2 modular forms rather than C.
This is also called the Ochanine genus, or sometimes the “Witten genus for a type
II superstring”.

As a consequence of this discussion (and because complex elliptic curves are
classified by their lattice up to scaling), a nondegenerate elliptic genus corresponds
to an elliptic curve with a choice of degree-two point. But since tori are paralleliz-
able, the canonical divisor of an elliptic curve is its identity element, and hence a

1Elliptic genera were initially defined as those which vanish on bundles of the form CP(ξ), where

ξ is an even-dimensional complex vector bundle over a closed orientable manifold. However, as

the name suggests, this definition was immediately shown to be equivalent to the one given here.
See [8] for more info.
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theta characteristic (square root of the canonical bundle) is a point of order two.
A Serre spectral sequence argument ([3]) shows that theta characteristics corre-
spond bijectively to spin structures; roughly speaking, a spin structure is a special
kind of double cover of the tangent bundle, which corresponds to a square root
in cohomology by some basic obstruction theory. Thus, normalized nondegenerate
elliptic genera correspond precisely to elliptic curves with spin structure! What’s
more, compactifying the coarse moduli space H/Γ0(2) of such objects (or, indeed,
the actual moduli stack) adds in two cusps which correspond to the two kinds of

degenerate elliptic genus: the signature and the Â-genus.

2. The analytic and topological descriptions

Historically, the interest in elliptic genera arose from the following theorem,
which was first conjectured by Witten in [13] and eventually proven by Bott and
Taubes in [4].

Theorem 2.1. (Elliptic Rigidity) A genus is elliptic if and only if it is multiplica-
tive with respect to spin bundles with compact connected structure group.2

Viewing genera as decategorified cohomology, this enhanced multiplicativity is
analogous to how the Leray-Hirsch theorem generalizes the Künneth theorem. In
fact, this is the right point of view: as we will see, this multiplicativity arises
from orientation in generalized cohomology. To get there, though, we first have to
describe genera as characteristic numbers.

Theorem 2.2. Each genus Φ can be written as Φ(M) = ⟨φ(TM), [M ]⟩ for a unique
stable multiplicative characteristic class φ ∈ H∗(BO;C) concentrated in even degree;
and every such class gives rise to a genus in this way.

(Stable means it sends trivial bundles to 1 ∈ H∗(M ;C), and multiplicative means
that the associated formal power series satisfies an analogue of the Whitney product
formula.)

Some straightforward computations with the canonical bundles over projective
spaces show that, identifying H∗(CP∞;C) ∼= C[[c1]] with the ring of power series
in one variable, the inverse power series to logΦ(x) is c1/φ(γ) (where γ is the
underlying real bundle of the universal complex line bundle). Thus, nondegenerate
elliptic genera are classified as those characteristic classes φ such that c1/φ(γ) is a
Jacobi elliptic function.

Examples.

(1) The signature of a 4k-manifold is defined to be the signature of the qua-
dratic form induced on H2k by the cup product and Poincarè duality. (It is
defined to be zero on manifolds of dimension not divisible by 4.) This de-
fines an elliptic genus, and in fact this genus corresponds to the degenerate
case ω = 0.

2This theorem admits an equivalent statement in the language of equivariant genera, which
act on manifolds with G-action and are valued in the character ring Rep(G). In short, it can be
shown that every genus extends to an equivariant genus for any smooth Lie group G, and elliptic

genera can then be characterized as genera Φ such that ΦG is valued in the subring of constant
characters whenever G is a compact and connected Lie group.
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(2) The Â-genus can be defined directly as the genus associated to the char-
acteristic class given by the power series of the function z

ez/2−e−z/2 . It

is instructive, however, to consider a more manifestly homotopy-theoretic
definition.

The Â-genus is defined abstractly to be the map on homotopy groups
induced by a certain map MSpin → KO⊗Q of E∞-rings called the Atiyah-
Bott-Shapiro orientation (originally proven for the underlying homotopy-
commutative ring spectra in [2]). Heuristically, this map is given by sending
a spin manifold to the Hilbert space of L2 sections of its spin bundle; the

details can be found in ([1]). Of course, this only defines the Â-genus for
spin manifolds. However, the natural reduction from spin cobordism to
oriented cobordism becomes an equivalence of rings MSpin⊗Q ≃ MSO⊗Q
upon rationalization (in fact, this only requires the inversion of 2). Con-
sequently, the ABS orientation extends to all oriented manifolds, defining
the degenerate elliptic genus corresponding to the case ω = ∞.

(3) The Ochanine genus, as defined above, arises similarly from a map of E∞-
rings MSpin[1/2] → tmf0(2) ([12]), where the latter spectrum is “tmf with
level 2 structure”.

(4) A variant of the Ochanine genus called the Witten genus arises from a map
of E∞-rings MString → tmf called the “topological Witten genus” ([1]).
I’ll have more to say about the Witten genus later, but for now suffice it
to note that it is not an elliptic genus3, and it serves as a replacement for
the Ochanine genus that ditches the complication of level 2 structure. (It
can be defined for spin manifolds, but it is only a modular form on string
manifolds.)

If you’re a topologist, these descriptions should already have you thinking of chro-
matic homotopy theory. (The last three should, at least. The signature also admits
a cohomological refinement as an E1 orientation in “L-theory”, the K-theory of
quadratic forms, although it is not known whether this orientation is E∞.) The
genera also have analytic descriptions, however, due to the Atiyah-Singer index
theorem.

(1) The signature of a 4k-manifold is equivalently the index of the signature
operator, defined as follows. Fix a metric on M , which yields a Hodge
star operator and thus allows us to define the adjoint d∗ of the exterior
derivative d. Then the Kähler-Dirac operator d + d∗ swaps the +1 and
−1-eigenspaces of the operator τ which acts on Ωp(M) by (−1)k+p(p−1)/2⋆,
and we take the map D : Ω+ → Ω− to be the signature operator. It is
standard Hodge theory that D is elliptic.

(2) The Â-genus of a spin manifold can be constructed similarly by replacing
the Kähler-Dirac operator with the Dirac operator intertwining the two
chiral summands of the spin bundle. (In fact, if we do this construction on
an arbitrary manifold with the spinor bundle replaced by the square root
of the exterior algebra of the complexification, we get the signature.)

(3) We would like to similarly exhibit the Ochanine and Witten genera as
the index of a Dirac operator with some kind of “thickened” structure

3While the Ochanine genus is universal among genera vanishing on certain complex projective
bundles, the Witten genus is universal among genera vanishing among certain octonionic projective
bundles. See [7].



ELLLIPTIC COHOMOLOGY AND CONFORMAL FIELD THEORIES 5

corresponding to the choice of (δ, ε). This is where conformal field theory
enters the picture: we will find that, granted some theory which is still
being developed, the Ochanine genus Φ is the equivariant index of a certain
operator on the loop space of a manifold.

Explicitly, these constructions arise as follows. We have an isomorphism K0 ⊗C ∼=
Heven(−;C) given by the Chern character. (This isomorphism can be checked on
spheres, where it follows from the clutching construction and Bott periodicity.) Us-
ing this, we can represent an even-dimensional characteristic class φ as a morphism
Λφ : KO → K0 ⊗ C, and so applying the Pontryagin-Thom construction (“fiber
integration in generalized cohomology”) gives us an equivalent way of representing
genera via characteristic classes (originally due to Hirzebruch):

Theorem 2.3. Each genus Φ can be represented uniquely as Φ(M) = πM
! (Λφ(TM)),

where φ is as above and πM
! : K0(M)⊗C → C is the Gysin map on K-theory induced

by M → ∗.

This is, by definition, the topological index of any Dirac operator lifting the
characteristic class. Applying this gives us an explicit formula for the Ochanine
genus in terms of q = exp(ω) ([9]), which shows that it is an integral power series
in q for any spin manifold. In fact, writing this out shows that it is the character
of a virtual projective unitary representation E+

M − E−
M of Diff(S1), which looks

suspiciously like a difference of chiral spin representations:

φ(u) = exp

( ∑
k>0 even

2G̃k

k!
uk

)
,

where ([15]) G̃k(τ) = −Gk(τ)+2Gk(2τ) are weight-two analogues of the Eisenstein

series. Notably, if we replace the G̃ks with their level 1 counterparts Gk, we get the
Witten genus! These formulae bring us, finally, to the relationship to field theory.

3. Conformal Field Theory

In the geometry underlying field theory, there is a fundamental sequence of
more and more restrictive symmetry structures. Beyond the structure of a smooth
manifold, one can impose orientability, and beyond that one can impose spin struc-
ture, string structure, and so on. Mathematically, these structures are given by
the Whitehead tower for the classifying space of the orthogonal group: · · · →
BFivebrane → BString → BSpin → BSO → BO. (These are actually all infinite
loop spaces, and this lifts to a Whitehead tower of spectra.) Physically, a lift from
one level to the next describes what physicists call “anomaly cancellation”. This
means that the functional being integrated (in the path integral associated to a field
theory) descends to a bona fide function on the actual moduli space of “paths”;
a priori, many of these are only defined on a much larger space whose quotient is
the moduli space, and therefore only descend to sections of some line bundle. The
“anomaly” is the obstruction to the trivialization of this bundle. For example, the
action functional of the standard σ-model for a relativistic string is a priori defined
on the space of all Riemannian metrics on a surface Σ (together with a map into a
fixed ambient “spacetime” manifold), but the relevant moduli space is the space of
conformal structures on Σ, which is a quotient of this. Famously, this functional
descends to the quotient iff the ambient spacetime is 26-dimensional.
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Witten relates the structure of an oriented Riemannian manifold M to the struc-
ture of its loop manifold LM = C∞(S1,M). (Note that LM admits a canonical
effective S1-action whose fixed point set is the canonical embedding of M ; and,
moreover, the tangent space to a loop γ ∈ LM is just the space of ambient vector
fields on the image of γ.)

Theorem 3.1. LM is orientable iff M is spin, and LM is spin iff p1(M) = 0.

Proof. By polarizing the tangent bundle of LM using ∂
∂θ , we reduce its structure

group to Ores(TLM) ≃ colim−−−→n
O(2n)/U(n) ≃ Ωcolim−−−→n

SO(2n). Then the first

statement follows by a computation with the Serre spectral sequence.
To prove the second, we use the projective spin representation of Ores described

by Segal and Pressley in [10], whose corresponding central extension is not along Z/2
(as in the finite-dimensional case) but rather S1. The cohomology class classifying
this extension is p1(M). □

Sadly, the vanishing of the first Pontryagin class is not always equivalent to
the existence of a string structure (although such a result holds for the so-called
“fractional Pontryagin class” 1

2p1 when M is spin and of dimension at least 5; see
[6]). Witten proposed ([14]) that the existence of a string structure on M should
be equivalent to the existence of an equivariant spin structure on LM . In fact,
applying the localization formula for equivariant K-theory in this case (assuming
that the Dirac operator exists), one finds the following incredible fact.

“Theorem” 3.1. Suppose LM has an S1-equivariant spin structure. Then the
equivariant index of the Dirac operator on LM is the Ochanine genus of M .

Recall from earlier that we were able to exhibit ordinary elliptic genera as indices
of Dirac operators associated to some kind of spin structure. This theorem tells us
that we can do something similar with the universal elliptic genus; we just have to
“thicken” M first (to LM).

I’d like to digress for a moment, and use this as an opportunity to discuss the
philosophy of conformal field theory. The main goal when studying any quantum
field theory is to compute its partition function and operator insertions, which is an
integral over some space of paths. The issue is the symmetry involved, which intro-
duces lots of infinities and redundancies that need to be cleverly folded together.
From a topological perspective, this is exactly a problem of equivariant cohomol-
ogy. Indeed, the famous localization formula can be viewed as a special case of
the general paradigm of Mackey functors in equivariant homotopy theory (func-
tors parameterized by the subgroup lattice) where the structure collapses down to
a single (improper) subgroup. As any equivariant algebraic topologist can attest,
the general version of this problem is extremely difficult, and has not really been
developed for actions of infinite groups yet.

From this point of view, then, it rather miraculous that Witten managed to
come up with a concrete realization of S1-equivariant cohomology in this way. In
principle, at least, this also explains the modular structure of the Witten genus
(and thus of elliptic genera in general): the index of the Dirac operator in the
finite-dimensional case can be computed as an integral over the loop manifold, and
so one would like to imagine that it works in the infinite-dimensional case as well,
yielding an integral over the torus manifold L2M . Since complex elliptic curves are
precisely tori, this should give us the modular form structure we know that elliptic
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genera have. This is, as Segal puts it, “obviously the right explanation”, but it is
phrased in terms of a mathematical theory which is not fully developed yet.

Actually computing this index as an integral is questionable, and even defining
the Dirac operator D is difficult. If we can construct an appropriate Hilbert space
of spinor fields on LM , however, it will admit a natural projective representation
of Diff(S1), and this will split into (the diagonal of) a representation of Diff(S1)×
Diff(S1) with respect to which the chiral splitting is supersymmetric. This explains
our character formula from earlier! From the point of view of QFT, this occurs
because the Ochanine genus is the partition function (i.e. trace) for a field theory
with (1, 1)-supersymmetry, aka a type II superstring theory; that is to say, a spin
structure with one chiral part and one antichiral part. This is because (as we saw
earlier) elliptic genera correspond to elliptic curves with spin structure, which are
the worldsheets of our theories, and so the path integral over all worldsheets yields
the universal elliptic genus. Witten actually gives an explicit construction of the
Ochanine genus as a partition function, and replacing the type II superstring with
a heterotic ((1, 0)-supersymmetric) superstring yields the Witten genus I referenced
earlier. Consequently, this construction unifies these two cases into “the genus of
the superstring”.

Constructing the Hilbert space of spinors is quite problematic in general. How-
ever, Segal carries out an analogous construction for the normal bundle of M ⊂ LM
and shows that it behaves properly. I’ll skip the details, but suffice to say that it
provides evidence for Witten’s conjecture, at least heuristically.

4. The Stolz-Teichner Program

Before concluding this talk, I’d like to describe how this relates to actual coho-
mology, in the generalized Eilenberg-Steenrod sense. A genus in the most general
sense is a ring homomorphism Ω → A, where Ω is some structured cobordism ring
and A is a C-algebra. However, just like Betti numbers fail to capture the full
structure of cohomology, genera fail to capture the full structure of conformal field
theories. After all, Ω is only the homotopy cobordism ring. The correct cobordism
ring is actually a ring spectrum, namely the cobordism spectrum MSO (or MSpin,
MString, etc.). These objects contain information about the cobordisms, cobor-
disms between cobordisms, and so on; and just like working with the category of
spaces instead of the homotopy category of spaces, we gain a great deal of structure
by doing this.

Consider the Â-genus, for example. From the perspective of CFT, this describes
the partition function of a spinning particle, a one-dimensional field theory. To fully
understand this geometry of this theory, though, we need to know about the K-
theory of the spin manifolds involved, since the operators of the field theory act on
bundles. Fortunately, as I mentioned earlier, this can be described via the Atiyah-
Bott-Shapiro orientation of K-theory, a map of E∞-rings MSpin → KO⊗Q which
admits a concrete geometric interpretation and is a lift of the Â-genus to the higher
setting. If we view the genus as the index of a Dirac operator, this lift corresponds
to replacing the numerical index dimker /∂−dim coker /∂ with its more sophisticated
counterpart in K-theory, ker /∂−coker /∂. There is also a zero-dimensional version of
this, familiar from differential topology: the usual orientation of manifolds, which
is valued in ordinary cohomology.
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A natural question to ask, then, is “What should play the role of K-theory for
superstrings?” Two-dimensional field theories should have an analogous geometric
structure replacing vector bundles; and so based on the theory of elliptic genera,
Witten conjectured in 1987 that this role should be filled by an appropriate theory
of elliptic cohomology. A candidate ring spectrum of “topological modular forms”
(tmf) was defined by Mike Hopkins eight years later ([5]), and it was finally proven
by Ando-Hopkins-Rezk in 2010 ([1]) that the Witten genus admits a refinement to
a map of E∞ ring spectra MString → tmf. A similar statement for the Ochanine
genus was proven by Dylan Wilson in 2015 ([12]) for tmf0(2), “topological modular
forms with level 2 structure”. These spectra of topological modular forms are
constructed as tensors on a universal spectral elliptic curve, in direct analogy to
the description of modular forms as tensors on a universal ordinary elliptic curve,
unifying the topology with the underlying geometry of string theory.

The story doesn’t end there. In 2011, spurred on by these developments, Stolz
and Teichner proposed ([11]) a deep relationship between cohomology theories and
field theories on flat Riemannian manifolds. In the language of chromatic homotopy,
tmf is the arithmetically global cohomology theory of chromatic height 2, and
likewise for K-theory and ordinary cohomology in heights 1 and 0 respectively. In
all of these cases, we have appropriate orientations by cobordism ring spectra, and
for heights d = 0, 1 we have more: there is an isomorphism

{d-dimensional SUSY field theories of degree n over X}/concordance ∼= En
d (X)

where Ed is the arithmetically global cohomology theory of height d. The Stolz-
Teichner program conjectures that an analogous (though necessarily more compli-
cated) relationship should exist between superstring theories and tmf; and, poten-
tially, that this relationship should extend to all d ≥ 0, yielding profound conse-
quences for both QFT and chromatic homotopy theory.
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